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Introduction
Human health risk assessments have tradi­
tionally relied heavily on toxicologic and other 
experimental data, but there is an increased 
recognition of the value of using epide­
miologic data in risk assessment. Previous 
publications (Fann et al. 2011; Jones et al. 
2009; Lavelle et al. 2012; Vlaanderen et al. 
2008) and initiatives have discussed how to 
improve the application of these epidemio­
logic data to risk assessments. As an example, 
at a meeting held in early 2010, the U.S. 
Environmental Protection Agency (EPA) 
requested input from the Federal Insecticide, 
Fungicide and Rodenticide Act Scientific 
Advisory Panel (FIFRA SAP) on approaches 
for the “[i]ncorporation of epidemiology 
and human incident data into human health 
risk assessment[s]” (U.S.  EPA 2009a). 
Epidemiologic studies play a key role in 
setting national ambient air quality standards 
(U.S. EPA 2009b) and contribute substan­
tially to other thematic weight-of-evidence 

approaches toward evaluating causality based 
on multiple lines of evidence (Rhomberg et al. 
2010; Weed 2005).

The incorporation of epidemiologic 
evidence into risk assessments is an impor­
tant part of understanding and characterizing 
risks from environmental and occupational 
exposures. Uncertainty arises from study limi­
tations regarding internal validity including 
exposure assessment, confounding and other 
potential sources of bias, and external validity 
or generalization from study populations to 
the populations for which risk assessments 
are conducted (Guzelian et al. 2005; Hertz-
Picciotto 1995; Lash et al. 2009; Levy 2008; 
Maldonado 2008; Persad and Cooper 2008). 
Further, point estimates can be inaccurate 
because of internal validity issues and also 
because confidence intervals focus only on the 
potential for random error. These different 
sources of uncertainty can have an impact on 
various steps of the risk assessment paradigm 
(including hazard identification, exposure 

assessment, and dose–response assessment) 
resulting in hazards that are not recognized, 
hazards that are incorrectly identified, or 
inaccurate dose–response characterizations 
that may lead to over- or underestimation of 
“safe” exposure levels.

Epidemiologic approaches and statistical 
techniques exist to characterize uncertainty 
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Background: There is a recognized need to improve the application of epidemiologic data in 
human health risk assessment especially for understanding and characterizing risks from environ­
mental and occupational exposures. Although there is uncertainty associated with the results of 
most epidemiologic studies, techniques exist to characterize uncertainty that can be applied to 
improve weight-of-evidence evaluations and risk characterization efforts.

Methods: This report derives from a Health and Environmental Sciences Institute (HESI) 
workshop held in Research Triangle Park, North Carolina, to discuss the utility of using epide­
miologic data in risk assessments, including the use of advanced analytic methods to address sources 
of uncertainty. Epidemiologists, toxicologists, and risk assessors from academia, government, and 
industry convened to discuss uncertainty, exposure assessment, and application of analytic methods 
to address these challenges.

Synthesis: Several recommendations emerged to help improve the utility of epidemiologic data in 
risk assessment. For example, improved characterization of uncertainty is needed to allow risk asses­
sors to quantitatively assess potential sources of bias. Data are needed to facilitate this quantitative 
analysis, and interdisciplinary approaches will help ensure that sufficient information is collected 
for a thorough uncertainty evaluation. Advanced analytic methods and tools such as directed acyclic 
graphs (DAGs) and Bayesian statistical techniques can provide important insights and support 
interpretation of epidemiologic data.
Conclusions: The discussions and recommendations from this workshop demonstrate that there 
are practical steps that the scientific community can adopt to strengthen epidemiologic data for 
decision making.
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that can be applied to weight-of-evidence 
evaluations and risk characterization efforts. 
Although there is strong theoretical support for 
the utility of these approaches, their translation 
into regular epidemiologic practice is lagging. 
In addition, the impact of potential sources 
of error in epidemiologic studies is often only 
qualitatively discussed. For example, with 
respect to exposure measurement error, Jurek 
et al. (2006) sampled papers from three epide­
miology journals over 1 year and found that 
only 61% of the articles made any mention of 
exposure measurement error, and only 46% 
of those qualitatively described the possible 
effects. Only 1 of 57 sampled studies quanti­
fied the likely impact of exposure measurement 
error on results. This incomplete information 
demonstrates an opportunity among epide­
miologists to characterize the magnitude and 
impact of various sources of uncertainty, which 
can help address one of the more difficult 
challenges in risk assessment.

This report derives from a workshop held 
in Research Triangle Park, North Carolina, 
in October 2012 (http://www.hesiglobal.
org/i4a/pages/index.cfm?pageID=3641) to 
discuss the utility of using epidemiologic 
data in risk assessments, including the use 
of advanced analytic methods to address 
sources of uncertainty. The objective of the 
workshop was to develop recommendations 
on strengthening epidemiologic studies so 
that these data can more effectively be inte­
grated in risk assessments. The Health and 
Environmental Sciences Institute (HESI) 
workshop was focused specifically on uncer­
tainty, exposure assessment, and application 
of analytic methods to address these chal­
lenges. Cross-disciplinary experts in epidemi­
ology, toxicology, exposure assessment, and 
risk assessment attended the workshop. The 
deliberations highlighted opportunities for 
epidemiologists to enhance scientific research 
in general and to address issues related to the 
development and use of epidemiologic data in 
risk assessment.

Uncertainty
The National Research Council (NRC 2009) 
defined uncertainty as the “lack or incom­
pleteness of information” critical for the risk 
assessment process. Uncertainty in an epide­
miologic study can arise from both random 
and systematic error in the study, whereas 
uncertainty in a risk assessment can arise from 
internal and external validity concerns arising 
from one study or set of studies included in 
the assessment. Thus, the characterization of 
scientific uncertainty can provide risk assess­
ments with a level of confidence regarding 
decisions that are being made and allows for 
evaluation of the degree that uncertainty plays 
in the analysis of consequences of specific 
policies. The NRC (2009) recommended 

that “risk assessments should characterize 
and communicate uncertainty and variability 
in all key computational steps of risk assess­
ments” while recognizing that “uncertainty 
analysis and characterization pose difficult 
technical issues, and in general related best 
practices have not been established.” Thus, 
determining the nature and magnitude 
of uncertainties remains one of the key 
challenges in risk assessment.

Because results across epidemiologic, 
toxicologic, and clinical data may be 
discordant at times, there is a distinct need 
to understand and characterize sources of 
uncertainty within each of these areas to 
characterize potential risk and hazard for risk 
assessment purposes. A comprehensive analysis 
of uncertainty across all data sources can act 
as a bridge to foster the integration neces­
sary to focus further research, improve risk 
assessment, and understand potential impacts 
on human health.

Uncertainty Issues and 
Recommendations
Improved characterization and discussion of 
plausible sources of uncertainty would be bene­
ficial in all epidemiologic reports and publica­
tions. The potential for bias in epidemiologic 
studies is routinely acknowledged in published 
reports but is nearly always limited to a qualita­
tive discussion (Jurek et al. 2006). Even quan­
titative discussions of, for example, selection 
bias are typically limited to examinations of 
participation rates or to potential sampling bias 
due to self-selection. In addition, the poten­
tial for residual confounding by measured or 
unmeasured factors is often acknowledged, 
but the magnitude and direction are usually 
unknown or unstated. Thus, characterizing 
and documenting the relationships (i.e., the 
direction and magnitude of associations) 
among potential confounders, exposures, 
and outcomes of interest is critical. Knowing 
the direction of a potential confounder (e.g., 
positive vs. negative confounding) could enable 
epidemiologic data to be used in the hazard 
identification stage of a risk assessment or for 
dose–response assessments if the magnitude of 
confounding is also known or the uncertainty 
from this source of bias could be quantified. 
Addressing these possible sources of bias in an 
epidemiologic study may allow risk assessors, 
to the extent possible, to quantify the conse­
quences of any bias in a specific study or across 
a group of similar studies. Although not a type 
of bias, an additional source of uncertainty is 
related to generalizing study results beyond 
the sample population being examined in an 
epidemiologic study. Characterizing variability 
in risk among different susceptible populations 
will ultimately make results of epidemiologic 
studies more relevant to risk assessment efforts 
and risk management decision making.

Conduct more validation studies and 
uncertainty analyses of epidemiologic study 
findings. The overall impact of different 
sources of uncertainty on epidemiologic results 
is infrequently considered in epidemiologic 
publications, and data sufficient to allow the 
reader to undertake independent uncertainty 
assessments are often not presented (Jurek et al. 
2007). This is essentially the lowest tier (i.e., 
tier 0) of uncertainty analyses recognized by 
the NRC (2009):
•	Tier  0: Default assumptions—single 

value of result
•	Tier 1: Qualitative but systematic identifica­

tion and characterization of uncertainty
•	Tier 2: Quantitative evaluation of uncertainty 

making use of bounding values, interval 
analysis, and sensitivity analysis

•	Tier 3: Probabilistic assessment with single 
or multiple outcome distributions reflecting 
uncertainty and variability.

We therefore recommend that investiga­
tors obtain additional data needed to facili­
tate uncertainty analysis and undertake at 
least a qualitative assessment of uncertainty, 
including all recognized sources or justifying 
their omission. A qualitative characterization 
would include identifying possible sources and 
beginning to assess the sources, direction, and 
magnitude of uncertainty. The potential rami­
fications of each source of uncertainty should 
be addressed and some crude classification or 
categorization approaches could be developed 
(e.g., low, intermediate, or high uncertainty) 
with respect to a given source. When sources 
of uncertainty can be identified but not fully 
quantified within a study or set of studies, 
there may be default data available that can be 
useful in estimating a possible range of values 
(Stürmer et al. 2007). Indeed, there may also 
be a complete lack of data that contribute to 
the uncertainty. However, investigators could 
consider the direction and magnitude of 
the potential uncertainty (i.e., confounding 
and/or bias). Such data would allow for higher 
tiers of uncertainty analyses. Methodologic 
guidance and software for quantitative bias 
analysis have also become available (Lash 
et al. 2009) but are not yet common in risk 
assessment. Ideally, to facilitate the highest tier 
of uncertainty analysis, a quantitative assess­
ment of individual and conjoint sources of 
uncertainty would be included in every epide­
miologic study. The conduct of more vali­
dation studies and sensitivity analyses is also 
recommended to better understand methodo­
logical issues and sources of uncertainty 
(Chatterjee and Wacholder 2002; Greenland 
1996; Rosenbaum 2005; Schneeweiss 2006; 
VanderWeele and Arah 2011). 

Improve communication about epide­
miologic uncertainty. We encourage full 
disclosure of uncertainty in epidemiology as a 
matter of transparency. Characterization and 
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quantification of uncertainty should increase 
such that the basis of decisions and assump­
tions are clear, either within the publication or 
in supplemental information. Epidemiologists 
and their peer scientists should encourage 
publications and other communications to 
include the necessary study-specific data on 
internal data relationships relevant to selec­
tion bias, information bias, and confounding 
for quantitative bias analysis to assess 
uncertainty (Lash et al. 2009). Reviewers of 
manuscripts should also recommend qualita­
tive, and if possible quantitative, discussions 
of uncertainties. The objective is for such 
information to be more routinely collected 
and reported.

Develop a broader matrix of sources 
of uncertainty for the overall risk assessment 
process, with the goal of harmonization 
of uncertainty assessment across different 
disciplines. Risk assessments consider the 
totality of the evidence (i.e., epidemiology, 
toxicology, and other lines of scientific 
evidence, as well as any other knowledge in the 
context of risk) when determining the weight 
of evidence. Other lines of evidence such as 
toxicology and mode of action can be used to 
inform the interpretation and use of epidemio­
logic data in risk assessment. Because uncer­
tainties exist in all lines of scientific endeavor, 
each source of uncertainty across these areas 
should be considered in assessing uncertainty 
in the overall risk assessment. Previous efforts 
have recommended harmonization of the 
incorporation of uncertainty in risk assess­
ment, primarily focusing on the use of default 
uncertainty values from toxicologic data 
(Sonich-Mullin et al. 2001). Consequently, 
harmonization of sources of uncertainty across 
epidemiology and toxicology should be under­
taken in a systematic manner that will make 
for more transparent decision making.

Exposure Assessment
Exposure science aims to quantify the inten­
sity, frequency, duration, and timing of human 
contact with chemical, physical, or biological 
agents occurring in the environment, and 
may be used to further inform evaluation of 
causality in the environmental source-to-health 
outcome continuum (Barr 2006). Within 
exposure science, exposure assessment specifi­
cally deals with several distinct aspects that 
underlie the risk assessment process, including 
exposure source(s), environmental pathway(s), 
environmental concentrations, human 
exposures, and dose.

Data are rarely available on biologically 
relevant dose metrics (e.g., absorbed dose, 
effective dose) in the organ or tissue of interest 
in epidemiologic studies; thus, dose is often 
estimated indirectly using exposure metrics. 
These surrogate estimates of exposure are 
subject to measurement error because they 

may rely on imperfectly measured concen­
trations in the individual, or on models of 
transport and fate in the environment or 
workplace. In addition, measurement error 
may result from estimates of the distribution 
of human uptake over time (e.g., use of a 
physiologically based pharmacokinetic model) 
or collection of activity pattern data.

Similar to measurement error and the 
resulting misclassification of health outcome 
data, exposure misclassification is important to 
characterize in epidemiologic studies because 
it can distort exposure–response relation­
ships and lead to biased or imprecise results. 
Exposure measurement error can be differen­
tial or nondifferential with respect to variation 
in disease status. Exposure measurement error 
can lead to exposure misclassification when 
exposure surrogates for individual participants 
are classified into categories for analysis.

Differential misclassification can arise in 
categorical exposure metrics even when there 
is nondifferential error (i.e., independent of 
disease status) in an exposure variable that 
is measured on a continuous scale (Flegal 
et  al. 1991). For epidemiologic studies to 
be evaluated and used appropriately in risk 
assessment, it is important that exposure 
measurement error is characterized and evalu­
ated thoroughly with consideration of the 
magnitude and direction of any potential 
exposure misclassification bias (Bergen et al. 
2013). This information is useful for risk 
assessors when they evaluate the potential for 
bias and confidence placed on study results.

Exposure Assessment Issues and 
Recommendations
An interdisciplinary perspective is needed 
during the study-design phase to ensure that 
biologically relevant quantitative exposure–
response information is collected that will be 
useful for risk assessment purposes. During the 
study-design phase, an interdisciplinary team 
including experts—for example, in epidemi­
ology, exposure assessment, industrial hygiene, 
and analytical chemistry—should be assem­
bled to develop robust exposure assessment 
approaches. This might include consideration 
of targeted data collection strategies, such as 
collection of exposure or surrogate data based 
on the appropriate biological matrix, sample 
number, and the critical exposure window(s). 
Other constraints that can be addressed 
include sources of exposure variability, avail­
ability of resources, participant burden, and 
ethical considerations (with institutional 
review board review as appropriate). This 
interdisciplinary approach will allow for the 
collection of biologically relevant exposure 
data to increase the potential for quantifica­
tion of exposure–response relationships that 
will be useful for risk assessment and risk 
management purposes.

Develop exposure assessment approaches 
that are transparent and well characterized. 
We recommend that study authors should 
discuss the nature (i.e., type, direction, and 
magnitude) and likelihood of any expected 
exposure measurement error and misclassi­
fication bias. An evaluation of measurement 
error and any resulting impact on effect 
estimates would provide risk assessors with 
information to weight studies by the quality 
of the exposure assessment, the methods used 
to adjust for exposure measurement error, 
and the likelihood that exposure measure­
ment error contributes to uncertainty in 
effect estimates in epidemiologic studies. 
Characterization of exposure data quality may 
include steps to make exposure data publicly 
available so that risk assessors can perform 
secondary data analyses including sensitivity 
and uncertainty analyses.

Quantify exposure measurement error and 
examine and correct for its impact on effect 
estimates. Ignoring uncertainty in exposure 
estimation can produce bias when such esti­
mates are used to examine associations with 
adverse health effects (Carroll et al. 1995). 
Although epidemiologic publications infre­
quently present detailed information on the 
potential impact of measurement error (Jurek 
et al. 2006; Spiegelman 2010), epidemiologic 
study results would be enhanced by detailing 
exposure assessment assumptions and charac­
terizing measurement error to allow risk 
assessors to gauge the potential impact of 
this error. This information should include 
characterization of different sources and types 
of measurement error. The sources and types 
can be based on various assumptions used in 
exposure modeling efforts, including unac­
counted inter- and intraindividual variability 
in exposure patterns (Kromhout et al. 1993; 
Symanski et  al. 2007) or from variability 
based on limited monitoring data. Once these 
different types and sources of measurement 
error are identified, bias analyses should be 
included to examine uncertainty due to the 
use of different exposure metrics in relation 
to what is known about the critical exposure 
period or evaluation of specific parameter 
estimates (e.g., half-life considerations 
of biological measures) or other modeling 
assumptions, such as the validity of the 
underlying input data (e.g., chemical moni­
toring data) and modeling data (e.g., fate and 
transport models) used to estimate exposure 
concentrations. Statistical techniques, both 
non-Bayesian and Bayesian, are available to 
allow for the correction of biased effect esti­
mates resulting from exposure measurement 
error. Examples of non-Bayesian methods 
for accounting and adjusting for exposure 
measurement error include conditional likeli­
hood methods (Guolo and Brazzale 2008; 
Lash and Fink 2003; Lash et  al. 2009; 
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Maldonado 2008; Stram et al. 2003) such as 
regression calibration (Spiegelman 2010) and 
conditional scores procedures (McShane et al. 
2001), whereas Bayesian methods exist that 
can be used for both binary and continuous 
exposures (Espino-Hernandez et al. 2011; Liu 
et al. 2009; Prescott and Garthwaite 2005; 
Rice 2003).

Develop improved methods for assessing 
exposures to multiple environmental chemicals 
and multiple routes of exposure. Traditionally, 
risk assessments have focused primarily on 
single chemicals. However, this does not 
reflect human exposure conditions. There is 
a recognized need to focus on multimedia 
sources of exposure to individual chemicals 
as well as complex mixtures. This is an area 
of research where observational studies, 
such as epidemiology, are an improvement 
over experimental studies because they can 
more readily address multiple exposures 
simultaneously.

It is important that epidemiologists 
continue to develop and evaluate methods 
for assessing exposure to complex mixtures in 
order to better characterize exposure assess­
ment and to allow for the evaluation of effect 
measure modification and confounding. 
This would establish a robust scientific 
database necessary to conduct cumulative 
risk assessments. The understanding of the 
relationships among complex exposures will 
require modeling of monitoring data and 
other exposure determinants and develop­
ment of techniques for assessing exposures to 
mixtures that result in unbiased or minimally 
biased effect estimates (Carlin et al. 2013). 
In addition, approaches such as multivariate 
source receptor modeling represent promising 
avenues for assessing exposure to complex 
mixtures (Hopke 2010), although further 
work is needed to account for key sources of 
uncertainty in such models. The development 
of efficient, easily measured, cost-effective 
exposure surrogates for key mixtures of 
concern will be important, and will include its 
own challenges for identifying and quantifying 
exposure measurement error. For example, it 
will be important to understand how the type 
and structure of measurement error may differ 
across different individual mixture compo­
nents or for a surrogate representing exposure 
to the whole mixture. Techniques are needed 
to characterize and adjust for exposure 
measurement error of chemical mixtures.

Analytic Tools in Epidemiology
Given that epidemiologic data are key 
inputs for risk assessments, it is important 
to apply methodologies that better charac­
terize validity and precision of study results. 
The methods considered can be broadly clas­
sified as a)  frequentist methods to address 
study biases systematically and quantitatively; 

b)  Bayesian statistical techniques, which 
utilize prior knowledge addressing causal 
hypotheses and estimation problems under 
evaluation; and c) computational methods 
(e.g., cross-validation, resampling tech­
niques, and boosting and model ensemble 
techniques), which provide valid statistical 
inferences without requiring strong a priori 
modeling assumptions. Each of these broad 
approaches addresses validity and charac­
terizes the uncertainty of results from a single 
study and extends to improved characteriza­
tion of epidemiologic results in weight-of-
evidence assessments.

The analytic methods group discussion 
included four specific areas that facilitate causal 
interpretation in epidemiology: a)  the use 
of directed acyclic graphs [DAGs, diagrams 
consisting of variables connected by arrows 
or lines to depict often complex relationships 
(Joffe et al. 2012)]; b) summarizing epidemio­
logic results using Bayesian posterior distribu­
tions; c) strategies for quantitatively evaluating 
measurement error; and d) formally assessing 
causality as it relates to policy decisions. Each 
of these areas led to a set of recommendations. 
These areas served as the basis for further 
discussion of related topics such as primary 
versus secondary analyses, journal require­
ments, epidemiology curricula, and data 
sharing practices.

Analytic Methods: Issues and 
Recommendations
The application of DAGs should be encouraged 
more broadly. Joffe et al. (2012) described how 
DAGs make explicit the assumed or estimated 
relationships among unobserved and measured 
variables, indicating the causal direction of the 
potential relationships. As described, DAGs 
are considered to be an appropriate method 
to illustrate causal hypotheses and to specify 
the structure of associations between variables 
of interest. They also provide a useful way to 
represent assumptions, especially conditional 
independence assumptions, necessary for 
statistical analyses and causal inference. Last, 
DAGs are helpful for determining which 
factors may be confounders or effect modi­
fiers of an association between exposure and 
outcome (VanderWeele and Robins 2007). 
DAGs provide transparent representations of 
a hypothesis as well as justification for specific 
analytic strategies to be applied during the 
investigation, such as identification of causal 
intermediates. DAGs can also clarify methodo­
logic challenges, such as illustrating selection 
bias (Flanders and Klein 2007; Hernán et al. 
2004). We recommend that journal editors 
request that DAGs be included in supplemental 
material (Westreich and Greenland 2013). 

Incorporate prior knowledge through 
Bayesian methods. Bayesian statistical analysis 
differs from frequentist methods in that 

Bayesian analyses use information that exists 
before study data are collected and analyzed 
(i.e., “prior” distributions) to update what 
can be learned about a specific problem after 
conducting a study by expressing the new 
state of knowledge as “posterior” distribu­
tions. Results from the literature or other data 
sources are used to specify the a priori distri­
bution for any parameters, such as the size 
and direction of exposure–outcome associa­
tions and the extent of measurement error. 
Subsequently, the study results generated 
by the analysis provide an assessment of the 
conditional probability distribution of param­
eters of interest (the posterior distribution) 
by reconciling the data observed, the analytic 
model fitted to the study data, and the prior 
information incorporated into the analytic 
model (Bolstad 2007). 

Bayesian techniques can also allow for 
simultaneous correction for sources of bias 
such as measurement error and confounding 
(de Vocht et  al. 2009; Steenland and 
Greenland 2004) that are typically treated in 
isolation in current practice of epidemiology 
(Gustafson and McCandless 2010). Although 
these techniques are not routinely employed, 
specification of prior model probabilities by 
investigators is inherent in grant proposals, 
the introduction section of a study publica­
tion, and the subjective interpretation of 
results (Goodman 2001). Thus, it could be 
argued that current practice involves presenting 
Bayesian considerations of a research 
article, whereas the reported results often 
rely on frequentist analysis and qualitative 
interpretations (Pearce and Corbin 2013).

Measurement error should not be ignored 
in any analysis of epidemiologic results and 
should be assessed using quantitative methods. 
Measurement error is an almost universal 
limitation of epidemiologic studies and their 
analyses. The current practice of acknowl­
edging it diffusely with a brief discussion 
that frequently invokes its theoretical impact, 
for example, that it is most likely to be 
nondifferential and results in potential for bias 
toward a null result, will not improve epide­
miologic input into risk assessments. Strategies 
for quantitatively correcting for the bias 
resulting from measurement error are described 
in textbooks and can be readily implemented 
for many study designs. These include regres­
sion calibration, simulation–extrapolation, 
Bayesian approaches (Carroll et  al. 1995; 
Gustafson 2004), and computational statistical 
approaches (e.g., multiple imputations, data 
augmentation, and expectation–maximization 
algorithms). Attention should be given to 
correcting for measurement error available in 
commonly used epidemiologic software plat­
forms such as rcal in STATA (http://www.
stata.com/merror/rcal.pdf) (Hardin et  al. 
2003) or PROC CALIS in SAS (SAS Institute 
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Inc.). Peer reviewers and journal editors should 
expect formal quantitative assessments of 
measurement error and related biases, as well 
as correction for bias created by measurement 
error, rather than relying on qualitative discus­
sions. In addition, adequate funding should be 
designated for exposure validation studies, and 
granting agencies should consider such vali­
dation studies as essential criteria for funding 
epidemiologic research (Heid et al. 2004). 

Distinguish associations from causes. 
Formal causality assessments are important 
and influence policy decisions. The synthesis of 
epidemiologic studies can be the primary basis 
for regulation and policy actions. Without 
state-of-the-art analytic techniques being used 
more routinely in epidemiologic studies and 
other lines of evidence, the benefits and costs 
of recommended interventions or action could 
be misestimated and apparent cost-effective 
interventions may be ineffective. In particular, 
it is unwarranted to assume that a specific 
statistical association represents a causal effect, 
such that changing the predictor variable 
would result in a corresponding change in 
the outcome variable (Freedman 2004). 
Indeed, the distinction between structural 
and reduced-form equations in econometrics, 
and phenomena such as Simpson’s Paradox, 
demonstrate that (reduced-form) regression 
coefficients need not even have the same sign 
as corresponding causal coefficients, showing 
how a change in an explanatory variable would 
change the dependent variable (Pearl 2009). 

Although epidemiologists are aware 
of basic threats to inferential validity from 
observational studies, there is little agree­
ment, even among workshop participants, on 
whether epidemiologists should consider the 
policy implications of declaring an association 
to be causal. One view expressed by workshop 
participants was that epidemiologists should 
primarily conduct research that supports or 
refutes qualitative statements about causa­
tion, as in showing that an exposure “causes” 
a specific disease. This viewpoint emphasizes 
epidemiology’s role in hazard identification, 
that is, an early stage of risk assessment for 
which putative threats to health are identi­
fied as causal. Another viewpoint was that 
epidemiologic results could be used to concep­
tualize causation in the context of popula­
tion health, for example, showing that some 
modifiable exposure is capable of causing 
important changes in health of popula­
tion overall. This would more closely align 
epidemiology with the risk characterization 
phase of risk assessment in which costs and 
benefits of risk management interventions 
are weighted and risks are appraised quanti­
tatively (Phillips 2001). Alternative outcomes 
analysis, an example of a technique that can 
provide important insights in distinguishing 
association from causation, could be more 

routinely applied in assessing causal infer­
ence and attributable risk estimation (Jager 
et  al. 1990; Meijster et  al. 2011a, 2011b; 
Thomsen et al. 2006). Alternative outcomes 
analysis allows for the conceptualization of 
causation in terms of causes of meaningful 
versus ignorable consequences, assuming these 
can be readily differentiated into one of these 
two options. Regardless of how epidemiologic 
data align with the risk assessment paradigm, 
epidemiologic practice should adopt methods 
that apply state-of-the-art techniques to 
address uncertainty and other study limita­
tions and to help contextualize epidemiologic 
study results in terms of causality and public 
health intervention.

Conclusions and Future 
Directions
Epidemiologic data are critical for risk assess­
ment efforts but are rarely conducted with 
quantification of uncertainty, which may 
limit their use in risk assessments. The HESI 
Epidemiology Subcommittee workshop 
focused on strengthening the utility and 
application of epidemiology studies by recom­
mending improvements in analytic methods, 
exposure assessment approaches, and other 
techniques to quantify and account for 
specific sources of uncertainty.

Several recommendations resulted from 
this effort. Specific statistical approaches and 
analytic techniques, such as increased use of 
quantitative bias analysis, DAGs, and Bayesian 
analyses, are available for improving the infer­
ences drawn from epidemiologic results and 
are currently used infrequently. In addition, 
new methods may be needed for assessing 
exposure and characterizing uncertainty related 
to chemical mixtures. Other deliberations 
in the workshop highlighted the complete 
reporting of all data elements and analytic 
tables to permit others to conduct uncertainty 
analyses (either in supplemental material 
published by journals or through the inves­
tigators’ institution). Specifically, increased 
transparency of results would improve weight-
of-evidence evaluations, and collaboration 
with researchers in other disciplines would 
improve study designs and analytic approaches, 
particularly for exposure assessment. 

Although there are multiple strategies for 
quantifying and reducing measurement error, 
there are barriers for routinely applying these 
techniques. A key disincentive is that substan­
tial time and effort can be required to conduct 
validation or reliability studies, which can 
put a strain on research budgets. There may 
also be a perception that analyses of exposure 
measurement error tends to decrease the esti­
mated precision of reported results, thereby 
increasing the probability of a false-negative 
result (Blair et al. 2009). Blair et al. (2007) 
suggested that exposure measurement error 

and the resulting misclassification is more 
likely to be nondifferential by disease status in 
epidemiology studies and will most frequently 
result in false negatives through attenuation 
of effect estimates. This assumption is made 
despite evidence from statistical literature that 
the impact of exposure measurement error can 
be profound and complex and that it is diffi­
cult to anticipate its impact on effect estimates 
in an individual study (Gustafson 2004). 
Given that many manuscripts are routinely 
accepted without analyses quantifying uncer­
tainty, validated exposure assessment, or use 
of advanced analytic methods, there is little 
incentive to adopt the recommendations 
made. Funding organizations, peer reviewers, 
and journal editors should be catalysts for 
change in this effort.

The discussions and recommendations 
from this workshop demonstrate that there are 
practical steps that the scientific community 
can adopt to strengthen epidemiologic data 
for decision making. Use of available methods 
to quantify and adjust for uncertainty will 
help reduce the potential impact of different 
sources of error and bias and help achieve 
better decisions for risk assessment, policy, 
and ultimately public health.

References

Barr D. 2006. Human exposure science: a field of growing 
importance [Editorial]. J Expo Sci Environ Epidemiol 
16:473; doi:10.1038/sj.jes.7500536.

Bergen S, Sheppard L, Sampson PD, Kim SY, Richards  M, 
Vedal  S, et  al. 2013. A national prediction model for 
PM2.5 component exposures and measurement error–
corrected health effect inference. Environ Health Perspect 
121:1017–1025; doi:10.1289/ehp.1206010.

Blair A, Saracci R, Vineis P, Cocco P, Forastiere F, Grandjean P, 
et al. 2009. Epidemiology, public health, and the rhetoric 
of false positives. Environ Health Perspect 117:1809–1813; 
doi:10.1289/ehp.0901194.

Blair A, Stewart P, Lubin JH, Forastiere F. 2007. Methodological 
issues regarding confounding and exposure misclassifica­
tion in epidemiological studies of occupational exposures. 
Am J Ind Med 50:199–207; doi:10.1002/ajim.20281.

Bolstad WM. 2007. Introduction to Bayesian Statistics. 2nd ed. 
New York:John Wiley & Sons Inc.

Carlin DJ, Rider CV, Woychik R, Birnbaum LS. 2013. Unraveling 
the health effects of environmental mixtures: an NIEHS 
priority [Editorial]. Environ Health Perspect 121:A6–A8; 
doi:10.1289/ehp.1206182.

Carroll RJ, Ruppert D, Stefanski LA. 1995. Measurement Error 
in Nonlinear Models. London:Chapman & Hall.

Chatterjee N, Wacholder S. 2002. Validation studies: bias, 
efficiency, and exposure assessment. Epidemiology 
13:503–506.

de Vocht F, Kromhout H, Ferro G, Boffetta P, Burstyn I. 2009. 
Bayesian modelling of lung cancer risk and bitumen 
fume exposure adjusted for unmeasured confounding 
by smoking. Occup Environ Med 66:502–508; doi:10.1136/
oem.2008.042606.

Espino-Hernandez G, Gustafson P, Burstyn I. 2011. Bayesian 
adjustment for measurement error in continuous exposures 
in an individually matched case-control study. BMC Med 
Res Methodol 11:67; doi:10.1186/1471-2288-11-67.

Fann N, Bell ML, Walker K, Hubbell B. 2011. Improving the 
linkages between air pollution epidemiology and quantitative 
risk assessment. Environ Health Perspect 119:1671–1675; 
doi:10.1289/ehp.1103780.

Flanders WD, Klein M. 2007. Properties of 2 counterfactual effect 
definitions of a point exposure. Epidemiology 18:453–460; 
doi:10.1097/01.ede.0000261472.07150.4f.

Flegal KM, Keyl PM, Nieto FJ. 1991. Differential misclassification 



Evaluating uncertainty in epidemiology

Environmental Health Perspectives  •  volume 122 | number 11 | November 2014	 1165

arising from nondifferential errors in exposure measure­
ment. Am J Epidemiol 134:1233–1244.

Freedman DA. 2004. Graphical models for causation, 
and the identification problem. Eval Rev 28:267–293; 
doi:10.1177/0193841X04266432.

Goodman SN. 2001. Of P-values and Bayes: a modest 
proposal  [Ed i tor ia l ] .  Ep idemio logy  12 :295–297 ; 
doi:10.1097/00001648-200105000-00006.

Greenland S. 1996. Basic methods for sensitivity analysis of 
biases. Int J Epidemiol 25:1107–1116.

Guolo A, Brazzale AR. 2008. A simulation-based comparison of 
techniques to correct for measurement error in matched 
case–control studies. Stat Med 27:3755–3775; doi:10.1002/
sim.3282.

Gustafson P. 2004. Measurement Error and Misclassification 
in Statistics and Epidemiology: Impacts and Bayesian 
Adjustments. Boca Raton, FL:Chapman & Hall/CRC Press.

Gustafson P, McCandless LC. 2010. Probabilistic approaches 
to better quantifying the results of epidemiologic studies. 
Int J Environ Res Public Health 7:1520–1539; doi:10.3390/
ijerph7041520.

Guzelian PS, Victoroff MS, Halmes NC, James RC, Guzelian CP. 
2005. Evidence-based toxicology: a comprehensive 
framework for causation. Hum Exp Toxicol 24:161–201; 
doi:10.1191/0960327105ht517oa.

Hardin JW, Carroll RJ, Schmiediche H. 2003. The regression 
calibration method for fitting generalized linear models 
with additive measurement error. STATA J:1–11.

Heid IM, Küchenhoff H, Miles J, Kreienbrock L, Wichmann HE. 
2004. Two dimensions of measurement error: classical and 
Berkson error in residential radon exposure assessment. 
J Expo Anal Environ Epidemiol 14:365–377; doi:10.1038/
sj.jea.7500332.

Hernán MA, Hernández-Díaz S, Robins JM. 2004. A structural 
approach to selection bias. Epidemiology 15:615–625; 
doi:10.1097/01.ede.0000135174.63482.43.

Hertz-Picciotto I. 1995. Epidemiology and quantitative risk 
assessment: a bridge from science to policy. Am J Public 
Health 85:484–491; doi:10.2105/AJPH.85.4.484.

Hopke PK. 2010. The application of receptor modeling to air 
quality data [in French]. Pollut Atmos (Special Issue, 
September 2010):91–109. 

Jager JC, Postma MJ, Boom FM, Reinking DP, Borleffs JCC, 
Heisterkamp SH, et al. 1990. Epidemiological models and 
socioeconomic information: methodological aspects of 
AIDS/HIV scenario analysis. In: Economic Aspects of 
AIDS and HIV Infection (Schwefel D, Leidl R, Rovira J, 
Drummond M, eds). Berlin:Springer Verlag, 262–281. 

Joffe M, Gambhir M, Chadeau-Hyam M, Vineis P. 2012. Causal 
diagrams in systems epidemiology. Emerg Themes 
Epidemiol 9:1; doi:10.1186/1742-7622-9-1.

Jones DR, Peters JL, Rushton L, Sutton AJ, Abrams KR. 2009. 
Interspecies extrapolation in environmental exposure 
standard setting: a Bayesian synthesis approach. Regul 
Toxicol Pharmacol 53:217–225; doi:10.1016/j.yrtph.2009.01.011.

Jurek AM, Maldonado G, Greenland S, Church TR. 2006. 
Exposure-measurement error is frequently ignored when 
interpreting epidemiologic study results. Eur J Epidemiol 
21:871–876; doi:10.1007/s10654-006-9083-0.

Jurek AM, Maldonado G, Greenland S, Church TR. 2007. 
Uncertainty analysis: an example of its application to 
estimating a survey proportion. J Epidemiol Community 
Health 61:650–654; doi:10.1136/jech.2006.053660.

Kromhout H, Symanski E, Rappaport SM. 1993. A comprehensive 
evaluation of within- and between-worker components of 
occupational exposure to chemical agents. Ann Occup Hyg 
37:253–270; doi:10.1093/annhyg/37.3.253.

Lash TL, Fink AK. 2003. Semi-automated sensitivity analysis to 
assess systematic errors in observational data. Epidemiology 
14:451–458; doi:10.1097/01.EDE.0000071419.41011.cf.

Lash TL, Fox MP, Fink AK. 2009. Applying Quantitative Bias 
Analysis to Epidemiologic Data. Vol. XII. New York:Springer.

Lavelle KS, Schnatter AR, Travis KZ, Swaen GM, Pallapies D, 
Money C, et al. 2012. Framework for integrating human and 
animal data in chemical risk assessment. Regul Toxicol 
Pharmacol 62:302–312; doi:10.1016/j.yrtph.2011.10.009.

Levy JI. 2008. Is epidemiology the key to cumulative 
r i s k  a s s e s s m e n t ?  R i s k  A n a l  2 8 : 1 5 0 7 – 1 5 1 3 ; 
doi:10.1111/j.1539-6924.2008.01121.x.

Liu J, Gustafson P, Cherry N, Burstyn I. 2009. Bayesian analysis 
of a matched case–control study with expert prior 
information on both the misclassification of exposure and 
the exposure–disease association. Stat Med 28:3411–3423; 
doi:10.1002/sim.3694.

Maldonado G. 2008. Adjusting a relative-risk estimate for study 
imperfections. J Epidemiol Community Health 62:655–663; 
doi:10.1136/jech.2007.063909.

McShane LM, Midthune DN, Dorgan JF, Freedman LS, Carroll RJ. 
2001. Covariate measurement error adjustment for matched 
case–control studies. Biometrics 57:62–73.

Meijster T, van Duuren-Stuurman B, Heederik D, Houba R, 
Koningsveld E, Warren N, et al. 2011a. Cost-benefit analysis 
in occupational health: a comparison of intervention 
scenarios for occupational asthma and rhinitis among 
bakery workers. Occup Environ Med 68:739–745; doi:10.1136/
oem.2011.064709.

Meijster T, Warren N, Heederik D, Tielemans E. 2011b. What 
is the best strategy to reduce the burden of occupational 
asthma and allergy in bakers? Occup Environ Med 
68:176–182; doi:10.1136/oem.2009.053611.

NRC (National Research Council). 2009. Science and Decisions: 
Advancing Risk Assessment. Washington, DC:National 
Academies Press. Available: http://www.nap.edu/openbook.
php?record_id=12209 [accessed 22 September 2014]. 

Pearce N, Corbin M. 2013. Why we should be Bayesians (and 
often already are without realising it). In: Current Topics 
in Occupational Epidemiology (Venables K, ed). Oxford, 
UK:Oxford University Press, 218–233.

Pearl J. 2009. The Logic of Structure-Based Counterfactuals. 
In: Causality: Models, Reasoning and Inference. 2nd ed. 
New York:Cambridge University Press, 201–258. 

Persad AS, Cooper GS. 2008. Use of epidemiologic data in 
Integrated Risk Information System (IRIS) assessments. 
Toxicol Appl Pharmacol 233:137–145; doi:10.1016/j.
taap.2008.01.013.

Phillips CV. 2001. The economics of ‘more research is needed’. 
Int J Epidemiol 30:771–776; doi:10.1093/ije/30.4.771.

Prescott GJ, Garthwaite PH. 2005. Bayesian analysis of 
misclassified binary data from a matched case–control 
study with a validation sub-study. Stat Med 24:379–401; 
doi:10.1002/sim.2000.

Rhomberg LR, Bailey LA, Goodman JE. 2010. Hypothesis-based 
weight of evidence: a tool for evaluating and communi­
cating uncertainties and inconsistencies in the large body 
of evidence in proposing a carcinogenic mode of action—
naphthalene as an example. Crit Rev Toxicol 40:671–696; 
doi:10.3109/10408444.2010.499504.

Rice K. 2003. Full-likelihood approaches to misclassification of 
a binary exposure in matched case-control studies. Stat 
Med 22:3177–3194; doi:10.1002/sim.1546.

Rosenbaum PR. 2005. Sensitivity analysis in observational 
studies. In: Encyclopedia of Statistics in Behavioral 
Science, Vol. 4 (Everitt BS, Howell DC, eds). Chichester, 
UK:John Wiley & Sons Ltd, 1809–1814. 

Schneeweiss S. 2006. Sensitivity analysis and external 
adjustment for unmeasured confounders in epidemiologic 
database studies of therapeutics. Pharmacoepidemiol 
Drug Saf 15:291–303; doi:10.1002/pds.1200.

Sonich-Mullin C, Fielder R, Wiltse J, Baetcke K, Dempsey J, 
Fenner-Crisp P, et al. 2001. IPCS conceptual framework for 
evaluating a mode of action for chemical carcinogenesis. 
Regul Toxicol Pharmacol 34:146–152; doi:10.1006/
rtph.2001.1493.

Spiegelman D. 2010. Approaches to uncertainty in exposure 
assessment in environmental epidemiology. Annu 
Rev Public Health 31:149–163; doi:10.1146/annurev.
publhealth.012809.103720.

Steenland K, Greenland S. 2004. Monte Carlo sensitivity analysis 
and Bayesian analysis of smoking as an unmeasured 
confounder in a study of silica and lung cancer. Am J 
Epidemiol 160:384–392; doi:10.1093/aje/kwh211.

Stram DO, Leigh Pearce C, Bretsky P, Freedman M, 
Hirschhorn JN, Altshuler D, et al. 2003. Modeling and E-M 
estimation of haplotype-specific relative risks from genotype 
data for a case-control study of unrelated individuals. Hum 
Hered 55:179–190; doi:10.1159/000073202.

Stürmer T, Glynn RJ, Rothman KJ, Avorn J, Schneeweiss S. 2007. 
Adjustments for unmeasured confounders in pharmaco­
epidemiologic database studies using external information. 
Med Care 45:S158–165; doi:10.1097/MLR.0b013e318070c045.

Symanski E, Greeson NMH, Chan W. 2007. Evaluating 
measurement error in estimates of worker exposure 
assessed in parallel by personal and biological monitoring. 
Am J Ind Med 50:112–121; doi:10.1002/ajim.20422.

Thomsen M, Sørensen P, Fauser P, Porragas G. 2006. 
Risk scenario analysis [Abstract] .  Epidemiology 
17(suppl 6):S486–S487. 

U.S.  EPA (U.S. Environmental Protection Agency). 2009a. 
FIFRA Scientific Advisory Panel: Notice of Public 
Meeting. EPA-HQ-OPP-2009-0851; FRL-8800-1. Fed Reg 
74(221):59533–59536: Available: http://www.gpo.gov/
fdsys/pkg/FR-2009-11-18/html/E9-27671.htm [accessed 
18 September 2014].

U.S.  EPA (U.S. Environmental Protection Agency). 2009b. 
Integrated Science Assessment for  Part iculate 
Matter (Final Report). EPA/600/R-08/139F. Washington, 
DC:U.S. EPA. Available: http://cfpub.epa.gov/ncea/cfm/
recordisplay.cfm?deid=216546 [accessed 18 September 
2014].

VanderWeele TJ, Arah OA. 2011. Bias formulas for sensitivity 
analysis of unmeasured confounding for general 
outcomes, treatments, and confounders. Epidemiology 
22:42–52; doi:10.1097/EDE.0b013e3181f74493.

VanderWeele TJ, Robins JM. 2007. Four types of effect 
modification: a classif ication based on directed 
acyclic graphs. Epidemiology 18:561–568; doi:10.1097/
EDE.0b013e318127181b.

Vlaanderen J, Vermeulen R, Heederik D, Kromhout H, European 
Union Network of Excellence ECNIS Integrated Risk 
Assessment Group. 2008. Guidelines to evaluate human 
observational studies for quantitative risk assessment. 
Environ Health Perspect 116:1700–1705; doi:10.1289/
ehp.11530.

Weed DL.  2005 .  Weight  o f  ev idence:  a  rev iew of 
concept  and methods.  Risk Anal  25:1545–1557; 
doi:10.1111/j.1539-6924.2005.00699.x.

Westreich D, Greenland S. 2013. The table 2 fallacy: presenting 
and interpreting confounder and modifier coefficients. 
Am J Epidemiol 177:292–298; doi:10.1093/aje/kws412.


